A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density $f = f(x,v,t)$ converges to an isotropic function $M(v)\rho(x,t)$, called the drift-diffusion limit, where $M$ is a Maxwellian and the physical density $\rho$ satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build two discontinuous Galerkin methods to the semiconductor model: one with the standard upwinding flux and the other with a $\varepsilon$-scaled Lax-Friedrichs flux, where 1/$\varepsilon$ is the scale of the collision frequency. We show that these schemes are uniformly stable in $\varepsilon$ and are asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in $\varepsilon$ to an accurate $h$-approximation of the drift diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to $\varepsilon$ and the spacial resolution are also included.
翻译:线性 Boltzmann 半导体模型的一个关键属性是,由于碰撞频率趋向于无限,相位空间密度 $f = f(x,v,t) $ 接近半导体函数 $m(v)\rho(x,t) $(x),称为 漂移扩散限值,其中美元为 Maxwellian 美元,而物理密度 $\rho$满足了称为 漂浮扩散方程式的二级抛射 PDE 。 反射特性的数值近似据说是模糊的保存。 在本文中,我们为半导体模型建立两种不连续的加勒金方法:一种是标准的降速通量通量,另一种是 $(varelc) 的流传量限制, 其中1\\\\ varepslon$是碰撞频率的尺度。 我们显示,这些计划在 $rvareplalislon 中统一稳定, 并保存。特别是,我们讨论的是, 离离 Maxwellkin $ 和 美元 的流化平面规则必须符合 美元 的 的 流流化规则, 。