In the present paper, we propose a Local Discontinuous Galerkin (LDG) approximation for fully non-homogeneous systems of $p$-Navier-Stokes type. On the basis of the primal formulation, we prove well-posedness, stability (a priori estimates), and weak convergence of the method. To this end, we propose a new DG discretization of the convective term and develop an abstract non-conforming theory of pseudo-monotonicity, which is applied to our problem. We also use our approach to treat the $p$-Stokes problem.
翻译:在本文件中,我们建议对完全非同质的系统类型采用局部不连续的加列尔金近似值,即美元-纳维尔-斯托克斯(LDG),根据原始的提法,我们证明我们非常稳妥、稳定(先验估计),而且方法的趋同不力。为此,我们建议对口术语采用新的DG分解法,并发展一种抽象的伪调调理论,适用于我们的问题。我们还利用我们的方法处理美元-斯托克斯(Stokes)问题。