In this article, we have considered a time-dependent two-parameter singularly perturbed parabolic problem with discontinuous convection coefficient and source term. The problem contains the parameters $\epsilon$ and $\mu$ multiplying the diffusion and convection coefficients, respectively. A boundary layer develops on both sides of the boundaries as a result of these parameters. An interior layer forms near the point of discontinuity due to the discontinuity in the convection and source term. The width of the interior and boundary layers depends on the ratio of the perturbation parameters. We discuss the problem for ratio $\displaystyle\frac{\mu^2}{\epsilon}$. We used an upwind finite difference approach on a Shishkin-Bakhvalov mesh in the space and the Crank-Nicolson method in time on uniform mesh. At the point of discontinuity, a three-point formula was used. This method is uniformly convergent with second order in time and first order in space. Shishkin-Bakhvalov mesh provides first-order convergence; unlike the Shishkin mesh, where a logarithmic factor deteriorates the order of convergence. Some test examples are given to validate the results presented.
翻译:在本篇文章中,我们考虑了一个有时间依赖的、以不连续的对流系数和源术语为单一扰动的双参数单体抛物线问题。 问题分别包括折合美元和折合系数的参数。 由于这些参数,边界两侧的边界层都会发展。 由于对流和源术语的不连续性, 内层和边界层的宽度接近不连续点。 内层和边界层的宽度取决于扰动参数的比重。 我们讨论了美元/ displaystystem\frac=mu2- unepsilon} 的比重问题。 我们用上风的有限差异法对空间的Shishkin- Bakhvalov网块和Crank- Nicolson法进行了调整。 在断开点时, 使用了三点公式。 这种方法与时间和空间的第二顺序一致。 Shishkin- Bakhvalov mesh 提供了第一个顺序的趋同点; 不同于Shishkin- main- surgilling exact review ex exactal exactal.