Convection-diffusion equations arise in a variety of applications such as particle transport, electromagnetics, and magnetohydrodynamics. Simulation of the convection-dominated regime for these problems, even with high-fidelity techniques, is particularly challenging due to the presence of sharp boundary layers and shocks causing jumps and discontinuities in the solution, and numerical issues such as loss of the maximum principle in the discretization. These complications cause instabilities, admitting large oscillations in the numerical solution when using traditional methods. Drawing connections to the simplex-averaged finite-element method (S. Wu and J. Xu, 2020), this paper develops a mimetic finite-difference (MFD) discretization using exponentially-averaged coefficients to guarantee monotonicity of the scheme and stability of the solution as the diffusion coefficient approaches zero. The finite-element framework allows for transparent analysis of the MFD, such as proving well-posedness and deriving error estimates. Numerical tests are presented confirming the stability of the method and verifying the error estimates.
翻译:微粒迁移、电磁和磁力动力学等各种应用中都会产生对流-分解等方程式。模拟以对流为主的这些问题的系统,即使采用高纤维化技术,由于存在尖锐的边界层和震荡导致解决方案的跳跃和不连续性,以及诸如分散化中丧失最大原则等数字问题,尤其具有挑战性。这些复杂因素造成不稳定,在使用传统方法时在数字解决方案中承认大振荡。与简单x平均的有限元素法(S.Wu和J.Xu,2020年)的连接,本文用指数平均系数来保证该方法的单一性和溶液的稳定性,从而开发了模拟的有限差异化(MFD),以保障该方法的稳定性和扩散系数接近零等解决方案的稳定性。有限要素框架允许透明地分析MFD,例如证明稳妥和得出误差估计数。数字测试证实了该方法的稳定性并核实了错误估计数。