In the present paper, we prove convergence rates for the Local Discontinuous Galerkin (LDG) approximation, proposed in Part I of the paper, for systems of $p$-Navier-Stokes type and $p$-Stokes type with $p\in (2,\infty)$. The convergence rates are optimal for linear ansatz functions. The results are supported by numerical experiments.
翻译:在本文件中,我们证明,本文件第一部分中提议的当地不连续的Galerkin近似(LDG)的汇合率,是美元-纳维尔-斯托克斯型和美元-斯托克斯型的系统与美元(2,\infty)的汇合率,对线性安萨兹函数而言,趋同率是最佳的,结果有数字实验的支持。