Recently, Murthy et al. [2017] and Escande et al. [2020] adopted the Lattice Boltzmann Method (LBM) to model the linear elastodynamic behaviour of isotropic solids. The LBM is attractive as an elastodynamic solver because it can be parallelised readily and lends itself to finely discretised dynamic continuum simulations, allowing transient phenomena such as wave propagation to be modelled efficiently. This work proposes simple local boundary rules which approximate the behaviour of Dirichlet and Neumann boundary conditions with an LBM for elastic solids. Both lattice-conforming and non-lattice-conforming, curved boundary geometries are considered. For validation, we compare results produced by the LBM for the sudden loading of a stationary crack with an analytical solution. Furthermore, we investigate the performance of the LBM for the transient tension loading of a plate with a circular hole, using Finite Element (FEM) simulations as a reference.
翻译:最近,Murthy等人[2017年]和Escande等人[2020年]通过了Lattice Boltzmann 方法(LBM),以模拟异体固体的线性椭圆体动力学行为。LBM作为一个超子体动力学求解器具有吸引力,因为它可以很容易地平行,并且能够进行细化的离散动态连续模拟,从而可以有效地模拟波波传播等瞬时现象。这项工作提出了简单的当地边界规则,与Drichlet和Neumann边界条件的行为相近,并使用弹性固体固体的LBM。考虑的是拉蒂成形和非纬成形、曲线边界的地形。为了验证,我们比较LBM所产生的结果,以便用分析解决办法突然装载固定裂口。此外,我们用Finite EEM 模拟作为参考,对用圆洞装入板块的瞬时,用LBM的表现进行了调查。