We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable (quantum) oblivious transfer (OT) protocol, mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions...) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely to exist classically as Cryptomania is believed to be different from Minicrypt. In particular, by instantiating our construction using Non-Interactive ZK (NIZK), we provide the first round-optimal (2-message) quantum OT protocol secure in the random oracle model, and round-optimal extensions to string and k-out-of-n OT. At the heart of our construction lies a new method that allows us to prove properties on a received quantum state without revealing (too much) information on it, even in a non-interactive way and/or with statistical guarantees when using an appropriate classical ZK protocol. We can notably prove that a state has been partially measured (with arbitrary constraints on the set of measured qubits), without revealing any additional information on this set. This notion can be seen as an analog of ZK to quantum states, and we expect it to be of independent interest as it extends complexity theory to quantum languages, as illustrated by the two new complexity classes we introduce, ZKstatesQIP and ZKstatesQMA.
翻译:我们提供一种通用的构造,将任何古典零知识(ZK)协议变成一个可作曲(Quantum)的(Quantum)隐形转移(OT)协议,主要是解除ZK协议的圆形复杂特性和安全保障(Plain-model/statistic security/un结构化功能......),作为由此产生的OT协议的ZK协议的圆形复杂特性和安全保障(Plain-state-static security/statical-secreat-formation.) 。这种构造不可能古老地存在,因为人们认为Coptopomonia 与Minicryt(Minicrypt)不同。特别是通过使用非互动的 ZK(NIZK)协议(Nik) 即我们提供了第一个圆形最佳(2Mesage) 量的量子协议(O) 量最佳(OT) 协议安全性地(OT) Q协议, 和圆形和圆形和圆形OT(k-Ot-n-OT) 功能扩展的扩展的扩展扩展扩展扩展的扩展的延伸延伸延伸延伸延伸。我们可以将它展示到ZZZ级的理论, 以测量为我们所测量到直等的高度。我们所测量到直等的高度的理论, 的高度的高度的高度。</s>