The design of Autonomous Vehicle software has largely followed the Sense-Plan-Act model. Traditional modular AV stacks develop perception, planning, and control software separately with little integration when optimizing for different objectives. On the other hand, end-to-end methods usually lack the principle provided by model-based white-box planning and control strategies. We propose a computationally efficient method for approximating closed-form trajectory generation with interpolating Radial Basis Function Networks to create a middle ground between the two approaches. The approach creates smooth approximations of local Lipschitz continuous maps of feasible solutions to parametric optimization problems. We show that this differentiable approximation is efficient to compute and allows for tighter integration with perception and control algorithms when used as the planning strategy.
翻译:机动车辆软件的设计基本上遵循了Sense-Plan-act模式;传统的模块式AV堆在优化不同目标时,单独开发了感知、规划和控制软件,很少结合;另一方面,端到端方法通常缺乏基于模型的白箱规划和控制战略提供的原则;我们建议一种计算效率高的方法,以近似封闭式轨迹生成,同时将辐射基础功能网络相互调和,从而在两种方法之间创造中间点;这一方法为当地Libschitz连续绘制了对准优化问题的可行解决办法的地图,绘制了平稳近似图。我们表明,这种不同的近似对于作为规划战略使用时,计算并允许与认知和控制算法更紧密结合是有效的。</s>