Rapidly-exploring random tree (RRT) has been applied for autonomous parking due to quickly solving high-dimensional motion planning and easily reflecting constraints. However, planning time increases by the low probability of extending toward narrow parking spots without collisions. To reduce the planning time, the target tree algorithm was proposed, substituting a parking goal in RRT with a set (target tree) of backward parking paths. However, it consists of circular and straight paths, and an autonomous vehicle cannot park accurately because of curvature-discontinuity. Moreover, the planning time increases in complex environments; backward paths can be blocked by obstacles. Therefore, this paper introduces the continuous-curvature target tree algorithm for complex parking environments. First, a target tree includes clothoid paths to address such curvature-discontinuity. Second, to reduce the planning time further, a cost function is defined to construct a target tree that considers obstacles. Integrated with optimal-variant RRT and searching for the shortest path among the reached backward paths, the proposed algorithm obtains a near-optimal path as the sampling time increases. Experiment results in real environments show that the vehicle more accurately parks, and continuous-curvature paths are obtained more quickly and with higher success rates than those acquired with other sampling-based algorithms.
翻译:快速探索随机树(RRT)已经用于自动泊车,因为快速解决高维运动规划和容易反映限制因素。然而,规划时间的增加是由于向狭窄的泊车点延伸而没有碰撞的概率低,因此计划时间的增加,因为向狭窄的泊车点延伸的可能性较小。为了缩短规划时间,提出了目标树算法,用一套(目标树)后方停车通道取代了RRT的泊车目标。然而,它由圆形和直线路径组成,而一个自主车辆由于曲线偏差而无法准确停车。此外,复杂环境中的规划时间增加;后方道路可能被障碍阻拦。因此,本文件为复杂的泊车环境引入了连续的曲度目标树算法。首先,目标树包括解决这种曲度偏差的布质路径。第二,为了进一步缩短规划时间,将成本功能确定为建造一棵目标树,考虑障碍。与最佳变量RRT相结合,并寻找到达的后方道路中最短的路径。随着取样时间的增加,拟议的算法获得了近最佳路径。实验结果显示,在现实环境中,车辆的取样率高于其他取样成功率。