Recent work has demonstrated that motion planners' performance can be significantly improved by retrieving past experiences from a database. Typically, the experience database is queried for past similar problems using a similarity function defined over the motion planning problems. However, to date, most works rely on simple hand-crafted similarity functions and fail to generalize outside their corresponding training dataset. To address this limitation, we propose (FIRE), a framework that extracts local representations of planning problems and learns a similarity function over them. To generate the training data we introduce a novel self-supervised method that identifies similar and dissimilar pairs of local primitives from past solution paths. With these pairs, a Siamese network is trained with the contrastive loss and the similarity function is realized in the network's latent space. We evaluate FIRE on an 8-DOF manipulator in five categories of motion planning problems with sensed environments. Our experiments show that FIRE retrieves relevant experiences which can informatively guide sampling-based planners even in problems outside its training distribution, outperforming other baselines.
翻译:最近的工作表明,通过从数据库中检索过去的经验,可以大大改进运动规划者的业绩; 通常,使用对运动规划问题所定义的类似功能,对过去类似问题的经验数据库进行查询; 然而,迄今为止,大多数工作都依靠简单的手工制作的相似功能,而没有在相应的培训数据集之外加以推广; 为了解决这一局限性,我们提议(FIRE),一个框架,从当地对规划问题进行陈述,并学习类似的功能; 为了产生培训数据,我们采用了一种新的自我监督方法,确定过去解决方案路径上地方原始生物的相似和不同配对。 有了这些对子,一个暹姆斯网络就接受了对比性损失培训,而相似功能是在网络的潜在空间实现的。 我们用8-DOF操纵器评估了五类运动规划问题,涉及感官环境。 我们的实验表明,FIRE检索了相关经验,这些经验可以对抽样规划者进行信息化指导,即使是在培训范围以外的问题中,也比其他基线有效。