Imitation learning addresses the challenge of learning by observing an expert's demonstrations without access to reward signals from the environment. Behavioral cloning (BC) formulates imitation learning as a supervised learning problem and learns from sampled state-action pairs. Despite its simplicity, it often fails to capture the temporal structure of the task and the global information of expert demonstrations. This work aims to augment BC by employing diffusion models for modeling expert behaviors, and designing a learning objective that leverages learned diffusion models to guide policy learning. To this end, we propose diffusion model-augmented behavioral cloning (Diffusion-BC) that combines our proposed diffusion model guided learning objective with the BC objective, which complements each other. Our proposed method outperforms baselines or achieves competitive performance in various continuous control domains, including navigation, robot arm manipulation, and locomotion. Ablation studies justify our design choices and investigate the effect of balancing the BC and our proposed diffusion model objective.


翻译:光学学习通过观察专家的演示而得不到来自环境的奖赏信号来应对学习的挑战。行为克隆(BC)将模仿学习作为受监督的学习问题,并从抽样的州-州-行动对方中学习。尽管简单,但它往往没有抓住任务的时间结构和专家演示的全球信息。这项工作的目的是利用专家行为模型的传播模型,并设计一个学习目标,利用学习的传播模型来指导政策学习。为此,我们提议推广模型-煽动行为克隆(Dimpulation-BC),将我们拟议的传播模型指导学习目标与BC目标结合起来,而BC目标是相辅相成的。我们所提议的方法超越了基线,或者在包括导航、机器人手臂操纵和移动在内的各种连续控制领域实现了竞争性业绩。进行的研究证明我们的设计选择和调查平衡不列颠哥伦比亚和我们拟议的扩散模型目标的效果是合理的。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
33+阅读 · 2022年2月15日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员