Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.
翻译:在推荐人系统中提供模型产生的解释对用户经验很重要。最先进的建议算法 -- -- 特别是以浅度或深度模型为基础的协作过滤法(CF) -- -- 通常与各种非结构化的信息来源合作,例如文本审查、视觉图像和各种隐含或明示反馈。虽然以内容为基础的方法审议了结构化知识基础,但由于大量数据的存在和许多复杂模型的学习能力,它们最近在很大程度上被忽略了。然而,结构化知识基础在个性化建议系统中具有独特的优势。在考虑建议时,关于用户和项目的明确知识时,该系统可以提供基于用户历史行为和知识的高度定制的建议,有助于就建议项目提供知情的解释。在这项工作中,我们提议为基于内容的建议而建立知识基础嵌入知识基础学习框架,以将差异性实体纳入建议,并以嵌入的知识基础为基础,提议一个软匹配算法,为推荐项目提供个性化的解释。在现实世界电子商务数据集的实验结果和知识有助于就推荐项目提供知情的解释性解释。我们比较的基线方法的优异性业绩和可解释性。