Physics-Informed Neural Networks (PINNs) have gained much attention in various fields of engineering thanks to their capability of incorporating physical laws into the models. PINNs integrate the physical constraints by minimizing the partial differential equations (PDEs) residuals on a set of collocation points. The distribution of these collocation points appears to have a huge impact on the performance of PINNs and the assessment of the sampling methods for these points is still an active topic. In this paper, we propose a Fixed-Budget Online Adaptive Learning (FBOAL) method, which decomposes the domain into sub-domains, for training collocation points based on local maxima and local minima of the PDEs residuals. The effectiveness of FBOAL is demonstrated for non-parameterized and parameterized problems. The comparison with other adaptive sampling methods is also illustrated. The numerical results demonstrate important gains in terms of the accuracy and computational cost of PINNs with FBOAL over the classical PINNs with non-adaptive collocation points. We also apply FBOAL in a complex industrial application involving coupling between mechanical and thermal fields. We show that FBOAL is able to identify the high-gradient locations and even give better predictions for some physical fields than the classical PINNs with collocation points sampled on a pre-adapted finite element mesh built thanks to numerical expert knowledge. From the present study, it is expected that the use of FBOAL will help to improve the conventional numerical solver in the construction of the mesh.


翻译:物理进化神经网络(PINNs)由于有能力将物理法纳入模型,在各个工程领域都得到了很大关注。 PINNs通过将部分差异方程式(PDEs)残余物在一组合用点上最小化来整合物理限制。这些合用点的分布似乎对PINNs的表现和对这些点抽样方法的评估产生了巨大影响。在本文件中,我们提议采用固定预算在线适应学习(FBOAL)方法,将域分解为子域,用于基于PDEs残余物的当地最大值和当地微型值的培训合用点。FBOAL的效用表现是非参数化和参数化的问题。与其他适应性取样方法的比较表明,PINNs(FBOAL)的准确性和计算成本方面有了重大提高。我们还将FBOAL用于一个复杂的工业应用点,而FBOI的预期数字化模型将使得FBO的精度在高水平的物理场上进行更好的分析。</s>

0
下载
关闭预览

相关内容

自适应学习,也被称为自适应教学,是使用计算机算法来协调与学习者的互动,并提供定制学习资源和学习活动来解决每个学习者的独特需求的教育方法。在专业的学习情境,个人可以“试验出”一些训练方式,以确保教学内容的更新。根据学生的学习需要,计算机生成适应其特点的教育材料,包括他们对问题的回答和完成的任务和经验。该技术涵盖了各个研究领域和它们的衍生,包括计算机科学、人工智能、心理测验、教育学、心理学和脑科学。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员