项目名称: 金属晶粒长大动力学的多尺度模拟

项目编号: No.51271089

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 秦湘阁

作者单位: 佳木斯大学

项目金额: 80万元

中文摘要: 大多数金属材料是多晶粒聚集体,理解晶粒长大动力学和控制晶粒尺寸对于预测多晶材料显微组织和制备大块纳米材料具有重要的意义。理想晶粒长大是指个体晶粒长大动力学方程符合von Neumann方程的二维晶粒长大和符合MacPherson-Srolovitz方程的三维晶粒长大。但是在实验上很难实现理想的晶粒长大过程。另一方面,尽管已有很多晶粒长大随机性模拟方法,但目前均未得到精确符合三维理想晶粒长大动力学的模拟结果。本项目将研究二维和三维统一的理想晶粒长大精确蒙特卡洛模拟方法,直接表征必须的三维晶粒平均宽度和棱长,实现理想晶粒长大动力学过程的一种随机性模拟和验证。在蒙特卡洛模拟晶粒组织的基础上,构建原子尺度多晶粒模型,进行理想晶粒长大的分子动力学模拟,并发展原子尺度晶粒参数定量分析程序,首次实现晶粒长大的蒙特卡洛法和分子动力法耦合多尺度模拟。

中文关键词: 晶粒长大;动力学;多尺度;蒙特卡洛模拟;分子动力学模拟

英文摘要: Most of the metal materials are polycrystallines. To understand the grain growth kinetics and to control grain size is of great significance to predict the polycrystalline microstructure of materials and preparation of bulk nano-materials. 2D and 3D ideal grain growth kinetics should be consistent with two-dimensional von Neumann equation and three-dimensional MacPherson-Srolovitz equation respectively. But the ideal grain growth kinetics in the experiment is difficult to achieve. On the other hand, many stochastic simulation methods on grain growth have been developed, but the simulation results do not accurately meet the three-dimensional ideal grain growth kinetics equation. The project will develop a new exact Monte Carlo simulation method to reproduce two-dimensional and three-dimensional ideal grain growth in which the three-dimensional mean width and edge length of grains will analysis directly, stochastic simulation on ideal grain growth kinetics will be implemented and validated. Based on simulated of grain structure using the Monte Carlo method, the multi-grain model at the atomic scale will be built, then molecular dynamics simulation of grain growth can be performed with the quantitative analysis method on grain parameters at atomic scale, a coupled multi-scale simulation using Monte Carlo method and

英文关键词: grain growth;kinetics;multi-scale;Monte Carlo simulation;molecular dynamics

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】面向多标签分类的端到端概率标签特征学习
专知会员服务
30+阅读 · 2022年1月27日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
69+阅读 · 2021年1月16日
专知会员服务
139+阅读 · 2020年12月3日
专知会员服务
220+阅读 · 2020年8月1日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Communication Bounds for Convolutional Neural Networks
小贴士
相关VIP内容
【AAAI2022】面向多标签分类的端到端概率标签特征学习
专知会员服务
30+阅读 · 2022年1月27日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
69+阅读 · 2021年1月16日
专知会员服务
139+阅读 · 2020年12月3日
专知会员服务
220+阅读 · 2020年8月1日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员