Modern clinical and epidemiological studies widely employ wearables to record parallel streams of real-time data on human physiology and behavior. With recent advances in distributional data analysis, these high-frequency data are now often treated as distributional observations resulting in novel regression settings. Motivated by these modelling setups, we develop a distributional outcome regression via quantile functions (DORQF) that expands existing literature with three key contributions: i) handling both scalar and distributional predictors, ii) ensuring jointly monotone regression structure without enforcing monotonicity on individual functional regression coefficients, iii) providing statistical inference via asymptotic projection-based joint confidence bands and a statistical test of global significance to quantify uncertainty of the estimated functional regression coefficients. The method is motivated by and applied to Actiheart component of Baltimore Longitudinal Study of Aging that collected one week of minute-level heart rate (HR) and physical activity (PA) data on 781 older adults to gain deeper understanding of age-related changes in daily life heart rate reserve, defined as a distribution of daily HR, while accounting for daily distribution of physical activity, age, gender, and body composition. Intriguingly, the results provide novel insights in epidemiology of daily life heart rate reserve.
翻译:现代临床和流行病学研究广泛采用磨损功能,记录关于人类生理和行为的平行实时数据流。随着分布式数据分析的最近进展,这些高频数据现在往往被视为分布式观测,从而产生新的回归环境。这些建模设置的动力是,我们通过微量函数(DORQF)开发分布性结果回归,扩大现有文献,有三个主要贡献:(一) 处理电路和分布式预测器;(二) 确保联合单调回归结构,不对个人功能回归系数实施单一度的计算,(三) 通过零星预测式联合信任带和具有全球意义的统计测试,以量化估计功能回归系数的不确定性。该方法受巴尔的巴尔的摩关于老龄化的纵向研究的“行动心”部分的驱动并应用,该研究收集了一周的心率(HR)和物理活动数据(PA),781名老年人的数据,以加深了解与年龄有关的日常生活率储备的变化,该数据被定义为每日人力资源的分布,同时计算了物理活动、年龄、性别和心脏结构的每日分布。</s>