We develop an essentially optimal finite element approach for solving ergodic stochastic two-scale elliptic equations whose two-scale coefficient may depend also on the slow variable. We solve the limiting stochastic two-scale homogenized equation obtained from the stochastic two-scale convergence in the mean (A. Bourgeat, A. Mikelic and S. Wright, J. reine angew. Math, Vol. 456, 1994), whose solution comprises of the solution to the homogenized equation and the corrector, by truncating the infinite domain of the fast variable and using the sparse tensor product finite elements. We show that the convergence rate in terms of the truncation level is equivalent to that for solving the cell problems in the same truncated domain. Solving this equation, we obtain the solution to the homogenized equation and the corrector at the same time, using only a number of degrees of freedom that is essentially equivalent to that required for solving one cell problem. Optimal complexity is obtained when the corrector possesses sufficient regularity with respect to both the fast and the slow variables. Although the regularity norm of the corrector depends on the size of the truncated domain, we show that the convergence rate of the approximation for the solution to the homogenized equation is independent of the size of the truncated domain. With the availability of an analytic corrector, we construct a numerical corrector for the solution of the original stochastic two-scale equation from the finite element solution to the truncated stochastic two-scale homogenized equation. Numerical examples of quasi-periodic two-scale equations, and a stochastic two-scale equation of the checker board type, whose coefficient is discontinuous, confirm the theoretical results.
翻译:我们开发了一种基本最佳的有限元素方法,以解决二等离子方程式,其两个尺度系数可能也取决于慢变数。我们解决了从相同振动两尺度趋同(A. Bourgeat, A. Mikelic和S. Wright, J. reine angew. Math, Vol. 456, 1994)中从同质方程式和正方程式的解决方案,其解决方案包括解析快速变异的无限域,并使用稀释的抗拉子产品限定要素。我们表明,从抽调水平的两等相异方程式水平的趋同性二等同性双等同性方程式的趋同性方程式。通过解析这个公式,我们获得同质方程式和正对等方程式的解异性方程式的解决方案,而我们相对正态变异异方程式的正性方程式的正向正异性方程式的正异性方程式,而我们对于正态变异性方程式的正异性方程式的正态标准则是正态的正态,而正态的正异方程式的正异方程式的正异方程式的正方程式的正方程式的正方程式的正方程式的正方程式的正方程式的正方程式的正方程式的正正方程式的正方程式的正方程式的正方程式的正方程式的正方程式的正正正正方程式的正正正方程式的正正方程式的正方程式的正方程式的正正方值的正方价性比率率率率率比值。