The biharmonic equation with Dirichlet and Neumann boundary conditions discretized using the mixed finite element method and piecewise linear (with the possible exception of boundary triangles) finite elements on triangular elements has been well-studied for domains in R2. Here we study the analogous problem on polyhedral surfaces. In particular, we provide a convergence proof of discrete solutions to the corresponding smooth solution of the biharmonic equation. We obtain convergence rates that are identical to the ones known for the planar setting. Our proof focuses on three different problems: solving the biharmonic equation on the surface, solving the biharmonic equation in a discrete space in the metric of the surface, and solving the biharmonic equation in a discrete space in the metric of the polyhedral approximation of the surface. We employ inverse discrete Laplacians to bound the error between the solutions of the two discrete problems, and generalize a flat strategy to bound the remaining error between the discrete solutions and the exact solution on the curved surface.
翻译:使用混合有限元素法和单向线性(除了边界三角体之外)对三角元素的有限元素进行分解的双调方程式与Drichlet 和 Neumann 边界条件的双调方程式已经对R2 的域进行了很好研究。 我们在这里研究多元面的类似问题。 特别是, 我们为双调方程式相应的平滑解决方案提供了离散解决方案的趋同证据。 我们获得了与平板设置中已知的一致率。 我们的证据集中于三个不同的问题: 解决地表的双调方程式, 解决地表离散空间的双调方程式, 以及解决地表多面相近度中离散空间的双调方程式。 我们用反离散的拉方程式将两个离散方程式的解决方案之间的错误捆绑在一起, 并普遍采用统一的战略将离解方解决方案与曲线表面的精确解决方案之间的剩余错误捆绑在一起。