We propose a robotic manipulation system that can pivot objects on a surface using vision, wrist force and tactile sensing. We aim to control the rotation of an object around the grip point of a parallel gripper by allowing rotational slip, while maintaining a desired wrist force profile. Our approach runs an end-effector position controller and a gripper width controller concurrently in a closed loop. The position controller maintains a desired force using vision and wrist force. The gripper controller uses tactile sensing to keep the grip firm enough to prevent translational slip, but loose enough to induce rotational slip. Our sensor-based control approach relies on matching a desired force profile derived from object dimensions and weight and vision-based monitoring of the object pose. The gripper controller uses tactile sensors to detect and prevent translational slip by tightening the grip when needed. Experimental results where the robot was tasked with rotating cuboid objects 90 degrees show that the multi-modal pivoting approach was able to rotate the objects without causing lift or slip, and was more energy-efficient compared to using a single sensor modality and to pick-and-place. While our work demonstrated the benefit of multi-modal sensing for the pivoting task, further work is needed to generalize our approach to any given object.
翻译:本文提出了一种机器人操作系统,它可以利用视觉、手腕力和触觉传感器在平面上旋转物体。我们的目标是在维持所需的手腕力矩的情况下,允许手持器械在握住点周围控制物体的旋转。我们的方法同时运行末端执行器位置控制器和手持器宽度控制器。位置控制器使用视觉和手腕力控制来维持所需的力矩。手持器控制器使用触觉传感器,在保持握力稳定的同时,使握住松散以产生旋转力。我们的传感器控制方法依赖于从物体尺寸和重量派生的所需力矩剖面,并使用基于视觉的物体姿态监视。手持器控制器使用触觉传感器检测和防止平移滑移,必要时加紧握力。实验结果表明,当机器人被要求将物体旋转90度时,多模式旋转方法能够旋转物体而不会引起升起或滑移,并且与使用单一传感器模式和取放操作相比,能够更加节能。虽然我们的工作证明了多模式传感对于旋转任务的益处,但还需要进一步研究将我们的方法普遍推广到任意给定物体的情况。