项目名称: 黎曼流形的曲率与拓扑关系研究

项目编号: No.11301416

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 万建明

作者单位: 西北大学

项目金额: 22万元

中文摘要: 本项目主要是用申请人发展的一些Bochner技巧中的方法来研究黎曼流形的曲率与拓扑结构的关系,以及曲率与复结构的关系。 黎曼流形的曲率与拓扑关系的研究是黎曼几何中最重要的课题之一。其中一个强有力的工具是Bochner技巧。 申请人通过考虑某些调和2形式的Bochner公式的组合形式,得到了一个曲率项只含截曲率的Bochner型公式。并用此公式来研究紧致四维正截面曲率流形的拓扑分类问题,特别是Hopf猜想。 决定一个紧致近复流形是否存在复结构在几何中是一具有基本重要性的问题。申请人考虑切丛值拉普拉斯算子作用在近复结构上,得到了一个与曲率相关的近复结构可积的充分条件。并用这个公式来研究高维近复流形上复结构存在性问题,特别是六维球面上复结构存在性问题。

中文关键词: 曲率;Betti数;单射半径;近复结构;

英文摘要: The author uses some ideas in Bochner technique developped by himself to investigate the relations of curvature and topology, also the relations of curvature and complex structures. The studying of relations of curvature and topology of Riemannian manifolds is one of the most important topics in Riemannian geometry. One of the strong tools is Bochner technique. The author considers the combination of Bochner formulas for some harmonic 2-forms and obtains a Bochner type formula which the curved term contains only sectional curvature. We use this formula to study the topological classification of compact 4-manifolds of positive sectional curvature, especially the Hopf conjecture. Determining whether a compact almost complex manifold has a complex structure is a fundamental problem in geometry. The author considers the acting of Laplacian on almost complex structures and obtains a sufficient condition to integrablity for almost complex structures related to curvature. We use this formula to study the existence of complex structures on higer dimentional almost complex structure manifolds, especially the existence of complex structures on 6-sphere.

英文关键词: curvature;Betti number;injectivity radius;almost complex structure;

成为VIP会员查看完整内容
2

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
6+阅读 · 2021年9月20日
专知会员服务
31+阅读 · 2021年6月24日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
119+阅读 · 2020年7月9日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
魏哲巍:图神经网络的理论基础
图与推荐
0+阅读 · 2021年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
102+阅读 · 2020年3月4日
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员