大多数现有的目标检测方法依赖于每类丰富的标记训练样本的可用性和批处理模式下的离线模型训练。这些要求极大地限制了在只能容纳具有有限标记训练数据的新类别,特别是模型在部署过程中的准确性和训练的效率。我们提出了一项研究,旨在通过考虑增量小样本检测(iFSD)问题设置来超越这些限制,其中新类必须以增量方式注册(不需要重新访问基类),并且只有很少的例子。为此,我们提出了开放式中心网(一次),这是一种用于增量学习的检测器,用于检测具有少量实例的新类对象。这是通过将CentreNet检测器优雅地适应小样本学习场景和元学习来实现的,元学习是一个类特定的代码生成器模型,用于注册新的类。一旦完全尊重增量学习范式,新的类注册只需要一个前向遍历的小样本训练样本,并且不访问基类——因此适合在嵌入式设备上部署。在标准物体检测和时尚地标检测任务上进行的大量实验首次证明了iFSD的可行性,开拓了一个有趣而又非常重要的研究方向。