Previous works on font generation mainly focus on the standard print fonts where character's shape is stable and strokes are clearly separated. There is rare research on brush handwriting font generation, which involves holistic structure changes and complex strokes transfer. To address this issue, we propose a novel GAN-based image translation model by integrating the skeleton information. We first extract the skeleton from training images, then design an image encoder and a skeleton encoder to extract corresponding features. A self-attentive refined attention module is devised to guide the model to learn distinctive features between different domains. A skeleton discriminator is involved to first synthesize the skeleton image from the generated image with a pre-trained generator, then to judge its realness to the target one. We also contribute a large-scale brush handwriting font image dataset with six styles and 15,000 high-resolution images. Both quantitative and qualitative experimental results demonstrate the competitiveness of our proposed model.
翻译:先前的字体生成工作主要侧重于标准打印字体, 字符形状稳定, 划线明显分开。 很少有关于笔迹字体生成的研究, 包括整体结构变化和复杂的划线传输。 为了解决这个问题, 我们提出一个新的基于 GAN 的图像翻译模型, 整合骨架信息 。 我们首先从培训图像中提取骨架, 然后设计一个图像编码器和一个骨架编码器, 以提取相应的特性 。 设计了一个自我注意的精细模块, 以指导模型学习不同域间的独特特征 。 涉及到一个骨骼分析器, 首次将生成图像中的骨架图像与一个预培训的生成器合成, 然后判断其真实性 。 我们还贡献了一个包含六种风格和15000 高分辨率图像的大型笔迹字体图像数据集 。 定量和定性实验结果都展示了我们拟议模型的竞争力 。