Text-to-face is a subset of text-to-image that require more complex architecture due to their more detailed production. In this paper, we present an encoder-decoder model called Cycle Text2Face. Cycle Text2Face is a new initiative in the encoder part, it uses a sentence transformer and GAN to generate the image described by the text. The Cycle is completed by reproducing the text of the face in the decoder part of the model. Evaluating the model using the CelebA dataset, leads to better results than previous GAN-based models. In measuring the quality of the generate face, in addition to satisfying the human audience, we obtain an FID score of 3.458. This model, with high-speed processing, provides quality face images in the short time.
翻译:文本到图像是文本到图像的子集, 由于其制作更为详细, 需要更复杂的结构。 在本文中, 我们展示了一个编码器- 解码器模型, 名为循环 Text2Face 。 循环 Text2Face 是编码器部分的新举措, 它使用句变压器和 GAN 生成文本描述的图像。 循环通过复制模型解码器部分的面部文字完成 。 使用 CelibA 数据集评估模型, 导致比以前基于 GAN 的模型更好的结果 。 在测量生成面部质量时, 除了满足人类观众之外, 我们获得了3. 458 的FID 分。 这个模型, 高速处理, 在短期内提供高质量的面部图像 。