Learning and generalizing from limited examples, i,e, few-shot learning, is of core importance to many real-world vision applications. A principal way of achieving few-shot learning is to realize an embedding where samples from different classes are distinctive. Recent studies suggest that embedding via hyperbolic geometry enjoys low distortion for hierarchical and structured data, making it suitable for few-shot learning. In this paper, we propose to learn a context-aware hyperbolic metric to characterize the distance between a point and a set associated with a learned set to set distance. To this end, we formulate the metric as a weighted sum on the tangent bundle of the hyperbolic space and develop a mechanism to obtain the weights adaptively and based on the constellation of the points. This not only makes the metric local but also dependent on the task in hand, meaning that the metric will adapt depending on the samples that it compares. We empirically show that such metric yields robustness in the presence of outliers and achieves a tangible improvement over baseline models. This includes the state-of-the-art results on five popular few-shot classification benchmarks, namely mini-ImageNet, tiered-ImageNet, Caltech-UCSD Birds-200-2011 (CUB), CIFAR-FS, and FC100.


翻译:从有限的例子中学习和概括,即少见的学习,对于许多现实世界的视觉应用具有核心重要性。实现少见学习的主要方式是将不同种类的样本嵌入其中。最近的研究表明,通过超单几何方法嵌入的等级和结构化数据对等级和结构化数据具有低度扭曲性,因此适合微分学习。在本文中,我们建议学习一种符合背景的双曲衡量标准,以描述一个点与一组学习的距离之间的距离。为此,我们将该计量标准作为超单体空间正切组合的加权总和,并开发一种机制,以适应性和基于各点的组合获得加权。这不仅使计量系统具有本地性,而且还取决于手头的任务,这意味着该计量标准将根据所比较的样本进行调整。我们从经验上表明,这种计量标准在外部的出现中具有强健健健性,并在基线模型上取得了显著的改进。为此,我们制定了五种流行的微分数字基准(即ME-IFAR-C-BSIS-200、C-IFAS-IS-IS-IS-IGIS-IS-IG-IGIS-IGIS-IGIS-IGIS-IS-IS-C-C-IGIS-C-C-IGIS-C-IAL-IGIS-C-IIS-C-C-C-C-C-CIS-IIS-C-C-C-C-C-C-C-C-CIS-CIS-CIS-C-C-C-C-CIS-CIS-C-C-C-CIS-C-C-C-C-C-C-CIS-C-C-C-CIS-CIS-C-C-C-C-CIS-CIS-CIS-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CISGIS-CISGISGIS-CIS-C-C-C-C-C-C-C-C-C-C-CIS-CIS-CIS-CIS-CIS-C-CIS-CIS-CIS-C-C-C-C-C-C-C-

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
【CIKM2020】多模态知识图谱推荐系统,Multi-modal KG for RS
专知会员服务
96+阅读 · 2020年8月24日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
42+阅读 · 2020年5月13日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月2日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
14+阅读 · 2019年9月11日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员