In recent years, many non-traditional classification methods, such as Random Forest, Boosting, and neural network, have been widely used in applications. Their performance is typically measured in terms of classification accuracy. While the classification error rate and the like are important, they do not address a fundamental question: Is the classification method underfitted? To our best knowledge, there is no existing method that can assess the goodness-of-fit of a general classification procedure. Indeed, the lack of a parametric assumption makes it challenging to construct proper tests. To overcome this difficulty, we propose a methodology called BAGofT that splits the data into a training set and a validation set. First, the classification procedure to assess is applied to the training set, which is also used to adaptively find a data grouping that reveals the most severe regions of underfitting. Then, based on this grouping, we calculate a test statistic by comparing the estimated success probabilities and the actual observed responses from the validation set. The data splitting guarantees that the size of the test is controlled under the null hypothesis, and the power of the test goes to one as the sample size increases under the alternative hypothesis. For testing parametric classification models, the BAGofT has a broader scope than the existing methods since it is not restricted to specific parametric models (e.g., logistic regression). Extensive simulation studies show the utility of the BAGofT when assessing general classification procedures and its strengths over some existing methods when testing parametric classification models.


翻译:近年来,许多非传统的分类方法,如随机森林、推推和神经网络等,在应用中被广泛使用,许多非传统的分类方法,如随机森林、推推和神经网络,在应用中被广泛使用。它们的性能通常以分类准确度衡量。虽然分类错误率等很重要,但它们没有解决一个根本问题:分类方法是否不适当?根据我们的最佳知识,目前没有方法能够评估一般分类程序是否适宜;事实上,由于缺乏参数假设,很难进行适当的测试。为了克服这一困难,我们提议了一个称为BAGofT的方法,将数据分成一个培训组和一个鉴定组。首先,对成套培训采用分类程序进行评估的分类程序也适用于该组,该组也用于适应性地寻找显示最不合适的区域的数据组。 然后,根据这一组,我们计算测试测试一个测试性统计,比较估计的成功概率和从验证集中观察到的实际反应。为了克服这一困难,我们提议了一个称为BAGFF的方法, 测试现有比B的精确度分析方法要更宽泛。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Automated Data Augmentations for Graph Classification
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2022年2月24日
A Survey on Data Augmentation for Text Classification
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员