题目: Multi-relational Poincaré Graph Embeddings
摘要: 双曲嵌入最近在机器学习中获得了关注,因为它们能够比欧几里得类似物更准确和简洁地表示层次数据。然而,多关系知识图谱经常显示多个同时的层次结构,这是目前的双曲模型没有捕捉到的。为了解决这个问题,我们提出了一个模型,在双曲空间的庞加莱球模型中嵌入多关系图数据。我们的多关系庞加莱模型(MuRP)通过Mobius矩阵向量乘法和Mobius加法学习特定关系参数来转换实体嵌入。在WN18RR层次知识图上的实验表明,我们的庞加莱嵌入方法在链路预测任务上优于欧氏嵌入方法和现有的嵌入方法,特别是在低维的情况下。