This paper proposes an unsupervised method for learning a unified representation that serves both discriminative and generative purposes. While most existing unsupervised learning approaches focus on a representation for only one of these two goals, we show that a unified representation can enjoy the mutual benefits of having both. Such a representation is attainable by generalizing the recently proposed \textit{closed-loop transcription} framework, known as CTRL, to the unsupervised setting. This entails solving a constrained maximin game over a rate reduction objective that expands features of all samples while compressing features of augmentations of each sample. Through this process, we see discriminative low-dimensional structures emerge in the resulting representations. Under comparable experimental conditions and network complexities, we demonstrate that these structured representations enable classification performance close to state-of-the-art unsupervised discriminative representations, and conditionally generated image quality significantly higher than that of state-of-the-art unsupervised generative models. Source code can be found at https://github.com/Delay-Xili/uCTRL.


翻译:本文建议了一种不加监督的方法,用于学习既符合歧视目的又符合基因目的的统一代表制。 虽然大多数现有的未经监督的学习方法只侧重于这两个目标中的一个代表制,但我们表明,一个统一的代表制可以享受两个目标的相互利益。 通过将最近提出的称为CTRL(CTRL)的框架推广到无人监督的环境,这种代表制是可以实现的。这需要解决一个限制性的极限游戏,即降低费率目标,即扩大所有样本的特征,同时压缩每个样本的增殖特征。通过这一过程,我们看到由此产生的代表制中出现了歧视性的低维结构。在相似的实验条件和网络复杂性下,我们证明这些结构化代表制使得能够进行接近最先进的、不受监督的歧视性代表制的分类,并且有条件生成的图像质量大大高于最先进的非受监督的基因化模型。源代码见https://github.com/Delay-Xili/uCTRL。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月16日
Arxiv
0+阅读 · 2022年12月15日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员