We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace capturing this information. As a concrete example, we focus on the phenomenon of ideological bias: we introduce the concept of an ideological subspace, show how it can be found by applying our method to online discussion forums, and present techniques to probe it. Our experiments suggest that the ideological subspace encodes abstract evaluative semantics and reflects changes in the political left-right spectrum during the presidency of Donald Trump.
翻译:我们建议一种完全不受监督的方法来检测背景化嵌入中的偏见。 这种方法利用社交网络潜在编码的各类信息,并结合了正方形规范、结构化宽度学习和图形神经网络来寻找捕捉这些信息的嵌入子空间。 具体的例子就是,我们侧重于意识形态偏见现象: 我们引入了意识形态子空间的概念, 展示如何通过将我们的方法应用于在线讨论论坛来找到它, 并展示了探索它的技术。 我们的实验表明,意识形态子空间将抽象的评估语义编码并反映了唐纳德·特朗普担任主席期间政治左偏右频谱的变化。