Dealing with distribution shifts is one of the central challenges for modern machine learning. One fundamental situation is the \emph{covariate shift}, where the input distributions of data change from training to testing stages while the input-conditional output distribution remains unchanged. In this paper, we initiate the study of a more challenging scenario -- \emph{continuous} covariate shift -- in which the test data appear sequentially, and their distributions can shift continuously. Our goal is to adaptively train the predictor such that its prediction risk accumulated over time can be minimized. Starting with the importance-weighted learning, we show the method works effectively if the time-varying density ratios of test and train inputs can be accurately estimated. However, existing density ratio estimation methods would fail due to data scarcity at each time step. To this end, we propose an online method that can appropriately reuse historical information. Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound, which finally leads to an excess risk guarantee for the predictor. Empirical results also validate the effectiveness.
翻译:处理分布变换是现代机器学习的核心挑战之一。 一个基本的情况是 \ emph{ covary shift}, 数据从培训阶段向测试阶段的输入分布变化, 而输入条件输出分布保持不变。 在本文中, 我们开始研究更具挑战性的情景 -- -- \ emph{ continuy} 共变换 -- -- 测试数据按顺序出现, 其分布可以持续变化。 我们的目标是对预测者进行适应性培训, 使其预测风险随时间累积到最小化。 从重要性加权学习开始, 我们展示了方法的有效性, 如果测试和培训投入的时间变化密度比可以准确估计。 然而, 现有的密度比率估计方法将因数据短缺而失败, 为此, 我们提出一种可以适当再利用历史信息的在线方法。 我们的密度比率估计方法通过享受动态的遗憾约束, 证明效果良好, 最终导致预测者的风险过剩。 Empical 的结果也证实了有效性 。