Deep learning algorithms have recently shown to be a successful tool in estimating parameters of statistical models for which simulation is easy, but likelihood computation is challenging. But the success of these approaches depends on simulating parameters that sufficiently reproduce the observed data, and, at present, there is a lack of efficient methods to produce these simulations. We develop new black-box procedures to estimate parameters of statistical models based only on weak parameter structure assumptions. For well-structured likelihoods with frequent occurrences, such as in time series, this is achieved by pre-training a deep neural network on an extensive simulated database that covers a wide range of data sizes. For other types of complex dependencies, an iterative algorithm guides simulations to the correct parameter region in multiple rounds. These approaches can successfully estimate and quantify the uncertainty of parameters from non-Gaussian models with complex spatial and temporal dependencies. The success of our methods is a first step towards a fully flexible automatic black-box estimation framework.
翻译:最近,深度学习算法已经被证明是一种成功的工具,用于估计统计模型的参数,对于模拟很容易,但似然计算很有挑战性的模型尤其如此。但是这些方法的成功取决于模拟出足以重现观测数据的参数,并且目前缺乏有效方法来产生这些模拟数据。我们开发了新的黑盒程序,仅基于弱参数结构假设即可估计统计模型的参数。对于那些出现频率很高的结构良好的似然函数,例如时间序列,这可以通过在广泛的模拟数据库上预先训练深度神经网络来实现,覆盖各种数据大小。对于其他类型的复杂依赖关系,迭代算法将模拟向正确的参数区域引导多轮。这些方法可以成功地估计和量化非高斯模型具有复杂空间和时间依赖性的参数不确定性。我们的方法的成功是向一个完全灵活的自动黑盒估计框架迈出的第一步。