Developing gaze estimation models that generalize well to unseen domains and in-the-wild conditions remains a challenge with no known best solution. This is mostly due to the difficulty of acquiring ground truth data that cover the distribution of possible faces, head poses and environmental conditions that exist in the real world. In this work, we propose to train general gaze estimation models based on 3D geometry-aware gaze pseudo-annotations which we extract from arbitrary unlabelled face images, which are abundantly available in the internet. Additionally, we leverage the observation that head, body and hand pose estimation benefit from revising them as dense 3D coordinate prediction, and similarly express gaze estimation as regression of dense 3D eye meshes. We overcome the absence of compatible ground truth by fitting rigid 3D eyeballs on existing gaze datasets and design a multi-view supervision framework to balance the effect of pseudo-labels during training. We test our method in the task of gaze generalization, in which we demonstrate improvement of up to $30\%$ compared to state-of-the-art when no ground truth data are available, and up to $10\%$ when they are. The project material will become available for research purposes.


翻译:注视估计模型在新领域和自然界条件下的泛化仍然是一个具有挑战性且没有最佳解决方案的难点。这主要是由于在真实世界中存在的可能面孔、头部姿势和环境条件的分布的标准数据获取困难。在这项研究中,我们提出了一种基于三维几何感知注视伪标注的通用注视估计模型的训练。我们从任意未标记的面部图像中提取这些数据,这些数据在互联网上广泛可用。此外,我们利用以下观察结果:头部、身体和手姿态估计受益于将它们作为密集三维坐标预测进行修订,类似地,我们将注视估计表达为密集三维眼部网格的回归。通过在现有的注视数据集上拟合刚性三维眼球,我们克服了兼容性标准数据缺失的问题,并设计了一个多视图监督框架,以平衡训练过程中伪标签的影响。我们在注视泛化任务中测试了我们的方法,并在无标准数据可用时实现了高达30%的改进,并在有标准数据时实现了多达10%的改进。该项目材料将提供给研究人员以供研究之用。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
CVPR 2021 论文盘点-人脸识别篇
CVer
2+阅读 · 2022年5月25日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
10+阅读 · 2021年12月9日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2021年9月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员