Modelling the extremal dependence of bivariate variables is important in a wide variety of practical applications, including environmental planning, catastrophe modelling and hydrology. The majority of these approaches are based on the framework of bivariate regular variation, and a wide range of literature is available for estimating the dependence structure in this setting. However, this framework is only applicable to variables exhibiting asymptotic dependence, even though asymptotic independence is often observed in practice. In this paper, we consider the so-called `angular dependence function'; this quantity summarises the extremal dependence structure for asymptotically independent variables. Until recently, only pointwise estimators of the angular dependence function have been available. We introduce a range of global estimators and compare them to another recently introduced technique for global estimation through a systematic simulation study, and a case study on river flow data from the north of England, UK.
翻译:建模双变量极值依赖性对于包括环境规划、灾害模型和水文学在内的各种实际应用至关重要。其中大多数方法基于双变量正常变化的框架,针对这种情况已经有大量文献可供参考,以估计依赖结构。然而,这个框架仅适用于表现出渐进性依赖性的变量,即使在实践中经常观察到渐近独立性。在本文中,我们考虑所谓的“角度依赖函数”;这个量总结了渐近独立变量的极值依赖结构。直到最近,只有角度依赖函数的点估计器可用。我们引入一系列全局估计器,并通过系统的模拟研究以及来自英格兰北部的河流流量数据的案例研究,将其与另一种最近引入的全局估计技术进行比较。