项目名称: 基于空时频多维度自适应处理的SAR干扰抑制新理论与新方法
项目编号: No.61471284
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无线电电子学、电信技术
项目作者: 周峰
作者单位: 西安电子科技大学
项目金额: 83万元
中文摘要: 在单通道雷达系统中,干扰和目标回波往往是混在一起的,仅仅利用时频信息很难实现对干扰的分离与抑制。而多通道合成孔径雷达既有发射信号的宽频带信息和平台运动产生的多普勒效应,又有多通道增加的空间自由度,因此其具有丰富的空、时、频资源。本项目将充分利用多通道宽带雷达的空、时、频信息,探索目标雷达回波和干扰在空时频多维度空间的信号表征理论,在慢时间-空域、快时间-空域、慢时间-快时间域、慢时间-快时间-空域联合域内研究基于目标联合导向矢量约束和干扰数据统计分布特性的自适应干扰抑制新方法,建立完整的空时频多维度空间自适应干扰抑制理论框架,并通过干扰试验对新理论和新方法进行完善和提高。本项目的研究内容将雷达成像、阵列信号处理、自适应信号处理和电子对抗等理论有机综合起来,探索新的多通道空-时-频综合处理理论和方法,以有效地抑制合成孔径雷达数据中的干扰,从而提升宽带成像雷达的信息获取能力。
中文关键词: 合成孔径雷达;干扰抑制;多维度信号处理;自适应信号处理
英文摘要: In single channel radar system, interference signal and target echo are often mixed together, time-frequency analysis is not sufficient for separation and suppression of interference signal. While multi-channel synthetic aperture radar utilize wideband information of transmitted signal and doppler effect of platform motion, increasing space degree of freedom, thus it has abundant space-time-frequency information. This project will make full use of these information, exploring signal representation methods in the space-time-frequency multidimensional space, and novel methods to implement adaptive interference suppression by using goal steering vectors constraint and distribution characteristics in different domains such as slow time-space domain, fast time-space domain, slow time-fast time domain, slow time-fast time-space domain, etc. Moreover, by the establishment of a complete theoretical framework in space-time-frequency multidimensional space adaptive interference suppression, the peformance of experimental results can be improved. With the combination of methods used in radar imaging, adaptive signal processing and electronic countermeausure, this project explores novel multi-channel space-time-frequency processing theories and algorithms so that interference signal can be suppressed effectively, thereby enhancing information acquisition capacity of wide-band imaging radar.
英文关键词: Synthtic Aperture Radar;Interference Suppression;Multidimensional Signal Processing;Adaptive Signal Processing