We consider two-step estimation of latent variable models, in which just the measurement model is estimated in the first step and the measurement parameters are then fixed at their estimated values in the second step where the structural model is estimated. We show how this approach can be implemented for latent trait models (item response theory models) where the latent variables are continuous and their measurement indicators are categorical variables. The properties of two-step estimators are examined using simulation studies and applied examples. They perform well, and have attractive practical and conceptual properties compared to the alternative one-step and three-step approaches. These results are in line with previous findings for other families of latent variable models. This provides strong evidence that two-step estimation is a flexible and useful general method of estimation for different types of latent variable models.
翻译:----
我们考虑隐变量模型的两步估计,即首先仅估计测量模型,然后在第二步中将测量参数固定为其估计值并估计结构模型。我们展示了如何实现这种方法用于潜在特质模型(项目反应理论模型),其中潜变量是连续的,其测量指标是分类变量。使用模拟研究和应用实例来考察两阶段估计器的性质。它们表现良好,并与替代的一步和三步方法相比具有有吸引力的实际和概念特性。这些结果符合以前对其他类型的隐变量模型的所需结果。这提供了强有力的证据,证明二步估计是不同类型隐变量模型的一种灵活且有用的通用估计方法。