Event extraction is a fundamental task for natural language processing. Finding the roles of event arguments like event participants is essential for event extraction. However, doing so for real-life event descriptions is challenging because an argument's role often varies in different contexts. While the relationship and interactions between multiple arguments are useful for settling the argument roles, such information is largely ignored by existing approaches. This paper presents a better approach for event extraction by explicitly utilizing the relationships of event arguments. We achieve this through a carefully designed task-oriented dialogue system. To model the argument relation, we employ reinforcement learning and incremental learning to extract multiple arguments via a multi-turned, iterative process. Our approach leverages knowledge of the already extracted arguments of the same sentence to determine the role of arguments that would be difficult to decide individually. It then uses the newly obtained information to improve the decisions of previously extracted arguments. This two-way feedback process allows us to exploit the argument relations to effectively settle argument roles, leading to better sentence understanding and event extraction. Experimental results show that our approach consistently outperforms seven state-of-the-art event extraction methods for the classification of events and argument role and argument identification.
翻译:事件提取是自然语言处理的基本任务。 查找事件参数的作用, 如事件参与者等事件参数对于事件提取至关重要。 然而, 寻找事件参数对于事件提取至关重要。 但是, 真实生活中的事件描述具有挑战性, 因为一个参数的作用往往在不同情况下各不相同。 虽然多个参数之间的关系和相互作用对于解决争论作用有用, 但现有方法在很大程度上忽视了这些信息。 本文通过明确利用事件参数的关系为事件提取事件提供了一个更好的方法。 我们通过精心设计的任务导向对话系统实现这一点。 为了模拟争论关系,我们采用强化学习和渐进学习的方法,通过多方向、迭接过程提取多种参数。 我们的方法利用已经提取的同一句子中已经提取的参数的知识来确定难以单独决定的争论作用。 然后,它利用新获得的信息来改进以前提取的论据的决定。 这个双向反馈过程使我们能够利用争论关系有效地解决争论作用,导致更好的判词理解和事件提取。 实验结果显示,我们的方法始终超越了七种状态事件提取方法,用于事件分类、争论角色和争论识别。