Training the generative models with minimal corpus is one of the critical challenges for building open-domain dialogue systems. Existing methods tend to use the meta-learning framework which pre-trains the parameters on all non-target tasks then fine-tunes on the target task. However, fine-tuning distinguishes tasks from the parameter perspective but ignores the model-structure perspective, resulting in similar dialogue models for different tasks. In this paper, we propose an algorithm that can customize a unique dialogue model for each task in the few-shot setting. In our approach, each dialogue model consists of a shared module, a gating module, and a private module. The first two modules are shared among all the tasks, while the third one will differentiate into different network structures to better capture the characteristics of the corresponding task. The extensive experiments on two datasets show that our method outperforms all the baselines in terms of task consistency, response quality, and diversity.
翻译:以最小功能对基因模型进行培训是建立开放域对话系统的关键挑战之一。 现有方法倾向于使用元学习框架,在对所有非目标任务参数进行前对齐之前,先对目标任务进行细调,然后对目标任务进行微调。然而,微调从参数角度区分任务,但忽略了模型结构观点,结果产生了不同任务的类似对话模式。在本文中,我们提出了一个算法,可以对每个任务在微小片中的独特对话模式进行定制。在我们的方法中,每个对话模式都包含一个共享模块、一个格子模块和一个私人模块。前两个模块在所有任务中共享,而第三个模块将区分为不同的网络结构,以更好地捕捉相应任务的特点。两个数据集的广泛实验表明,我们的方法在任务一致性、应对质量和多样性方面超越了所有基线。