We present a system for rapidly customizing event extraction capability to find new event types and their arguments. The system allows a user to find, expand and filter event triggers for a new event type by exploring an unannotated corpus. The system will then automatically generate mention-level event annotation automatically, and train a Neural Network model for finding the corresponding event. Additionally, the system uses the ACE corpus to train an argument model for extracting Actor, Place, and Time arguments for any event types, including ones not seen in its training data. Experiments show that with less than 10 minutes of human effort per event type, the system achieves good performance for 67 novel event types. The code, documentation, and a demonstration video will be released as open source on github.com.
翻译:我们提出了一个快速定制事件提取能力以查找新事件类型及其参数的系统。 该系统允许用户通过探索一个无附加说明的文体来发现、 扩展和过滤事件触发新事件类型。 然后该系统将自动生成提及级事件注释, 并培训神经网络模型来寻找相应事件。 此外, 该系统将使用ACE 系统来为任何事件类型( 包括培训数据中未见的事件)的提取动作、 地点和时间参数培训一个参数模型。 实验显示, 每类事件只有不到10分钟的人类努力, 系统就能在67种新事件类型中取得良好的性能。 代码、 文件以及演示视频将在 Github. com 上作为公开来源发布 。