Clustering bipartite graphs is a fundamental task in network analysis. In the high-dimensional regime where the number of rows $n_1$ and the number of columns $n_2$ of the associated adjacency matrix are of different order, existing methods derived from the ones used for symmetric graphs can come with sub-optimal guarantees. Due to increasing number of applications for bipartite graphs in the high dimensional regime, it is of fundamental importance to design optimal algorithms for this setting. The recent work of Ndaoud et al. (2022) improves the existing upper-bound for the misclustering rate in the special case where the columns (resp. rows) can be partitioned into $L = 2$ (resp. $K = 2$) communities. Unfortunately, their algorithm cannot be extended to the more general setting where $K \neq L \geq 2$. We overcome this limitation by introducing a new algorithm based on the power method. We derive conditions for exact recovery in the general setting where $K \neq L \geq 2$, and show that it recovers the result in Ndaoud et al. (2022). We also derive a minimax lower bound on the misclustering error when $K = L$ under a symmetric version of our model, which matches the corresponding upper bound up to a factor depending on $K$.
翻译:组合双面图是网络分析的一项基本任务。 在高维系统中, 行数为n_1美元, 相关相邻矩阵列数为$_2美元, 相关相邻矩阵列数为$n_2美元, 其数量顺序不同, 从对称图所使用的对称图中得出的现有方法可以带来亚最佳的保证。 由于在高维系统中对双面图应用量的增加,因此为这一设置设计最佳算法至关重要。 Ndaoud 等人最近的工作(2022年)改进了特殊情况下错误组合率的现有上限,在此特例中,列(重写行)可分为$=2美元(重写美元=2美元)。 不幸的是,它们的算法无法扩展至高维系统对双面图应用量的更一般设置。 我们通过采用基于权力方法的新算法来克服了这一限制。 我们从总体定位中得出准确的回收条件, $Nqneq l\geq $, 在正值为$2美元, 平面的平面标值中, 显示其折值为xxxxxxx 。</s>