Recent years have witnessed huge successes in 3D object detection to recognize common objects for autonomous driving (e.g., vehicles and pedestrians). However, most methods rely heavily on a large amount of well-labeled training data. This limits their capability of detecting rare fine-grained objects (e.g., police cars and ambulances), which is important for special cases, such as emergency rescue, and so on. To achieve simultaneous detection for both common and rare objects, we propose a novel task, called generalized few-shot 3D object detection, where we have a large amount of training data for common (base) objects, but only a few data for rare (novel) classes. Specifically, we analyze in-depth differences between images and point clouds, and then present a practical principle for the few-shot setting in the 3D LiDAR dataset. To solve this task, we propose a simple and effective detection framework, including (1) an incremental fine-tuning method to extend existing 3D detection models to recognize both common and rare objects, and (2) a sample adaptive balance loss to alleviate the issue of long-tailed data distribution in autonomous driving scenarios. On the nuScenes dataset, we conduct sufficient experiments to demonstrate that our approach can successfully detect the rare (novel) classes that contain only a few training data, while also maintaining the detection accuracy of common objects.


翻译:近年来,在3D物体探测方面取得了巨大成功,以识别用于自主驾驶的通用物体(如车辆和行人),然而,大多数方法都严重依赖大量贴有良好标签的培训数据。这限制了它们探测稀有微粒物体(如警车和救护车)的能力,而这是紧急情况救援等特殊情况的重要手段。为了同时探测普通和稀有物体,我们提议了一项新颖的任务,称为 " 通用微粒3D物体探测 ",其中我们拥有大量用于通用(基地)物体的培训数据,但只有很少的(新)类数据。具体地说,我们深入分析图像和点云之间的差异,然后为3DLDAR数据集中的微粒设置提供一个实用的原则。为了解决这个问题,我们提出了一个简单而有效的探测框架,包括:(1) 一种渐进的微调方法,以扩展现有的3D探测模型,以识别普通和稀有物体,以及(2) 一种抽样的适应平衡损失,以缓解在自主驱动情景中长期扩展的数据分布的问题。我们深入分析图像和点云值云,然后为三DLDAR数据集的正确性测试方法只能成功进行。

0
下载
关闭预览

相关内容

专知会员服务
59+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年3月28日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
10+阅读 · 2019年1月24日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员