Existing learning methods for LiDAR-based applications use 3D points scanned under a pre-determined beam configuration, e.g., the elevation angles of beams are often evenly distributed. Those fixed configurations are task-agnostic, so simply using them can lead to sub-optimal performance. In this work, we take a new route to learn to optimize the LiDAR beam configuration for a given application. Specifically, we propose a reinforcement learning-based learning-to-optimize (RL-L2O) framework to automatically optimize the beam configuration in an end-to-end manner for different LiDAR-based applications. The optimization is guided by the final performance of the target task and thus our method can be integrated easily with any LiDAR-based application as a simple drop-in module. The method is especially useful when a low-resolution (low-cost) LiDAR is needed, for instance, for system deployment at a massive scale. We use our method to search for the beam configuration of a low-resolution LiDAR for two important tasks: 3D object detection and localization. Experiments show that the proposed RL-L2O method improves the performance in both tasks significantly compared to the baseline methods. We believe that a combination of our method with the recent advances of programmable LiDARs can start a new research direction for LiDAR-based active perception. The code is publicly available at https://github.com/vniclas/lidar_beam_selection
翻译:现有的基于激光雷达的学习方法使用预先确定的束配置下扫描的三维点,例如,束的仰角通常均匀分布。这些固定的配置是任务不可知的,因此仅使用这些配置可能导致次优性能。在这项工作中,我们采用新的方法来学习优化给定应用程序的激光雷达束配置。具体而言,我们提出了一种基于强化学习的学习优化(RL-L2O)框架,以自动以端到端的方式为不同的基于激光雷达的应用程序优化束配置。优化受目标任务的最终性能指导,因此我们的方法可以轻松地作为简单的分离模块与任何基于激光雷达的应用程序集成。当需要低分辨率(低成本)激光雷达时,该方法特别有用,例如,在大规模系统部署中。我们使用我们的方法为两个重要任务搜索低分辨率激光雷达的束配置:三维目标检测和定位。实验表明,与基础线方法相比,所提出的RL-L2O方法显着改善了两项任务的性能。我们相信,我们的方法与最近的可编程激光雷达技术的结合可以为基于激光雷达的主动感知开辟新的研究方向。本文的代码可在https://github.com/vniclas/lidar_beam_selection上公开获取。