Object detection with on-board sensors (e.g., lidar, radar, and camera) play a crucial role in autonomous driving (AD), and these sensors complement each other in modalities. While crowdsensing may potentially exploit these sensors (of huge quantity) to derive more comprehensive knowledge, \textit{federated learning} (FL) appears to be the necessary tool to reach this potential: it enables autonomous vehicles (AVs) to train machine learning models without explicitly sharing raw sensory data. However, the multimodal sensors introduce various data heterogeneity across distributed AVs (e.g., label quantity skews and varied modalities), posing critical challenges to effective FL. To this end, we present AutoFed as a heterogeneity-aware FL framework to fully exploit multimodal sensory data on AVs and thus enable robust AD. Specifically, we first propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background. We also propose an autoencoder-based data imputation method to fill missing data modality (of certain AVs) with the available ones. To further reconcile the heterogeneity, we finally present a client selection mechanism exploiting the similarities among client models to improve both training stability and convergence rate. Our experiments on benchmark dataset confirm that AutoFed substantially improves over status quo approaches in both precision and recall, while demonstrating strong robustness to adverse weather conditions.
翻译:物体探测在自动驾驶中发挥关键作用。车载传感器(例如激光雷达,雷达和摄像头)的多种模式可以互补,这些传感器有可能通过众包获取更全面的知识。联邦学习(FL)是实现这一潜力的必要工具,使自动驾驶车辆(AVs)可以在不明确共享原始传感器数据的情况下训练机器学习模型。然而,多模态传感器会在分布式AVs之间引入各种与数据异构性相关的挑战,例如标签数量偏斜和数据模态的差异等。为此,我们提出了AutoFed作为一种异构感知的FL框架,以充分利用AVs上的多模态传感器数据,从而实现鲁棒的自动驾驶。具体而言,我们首先提出一种利用伪标签的新模型,以避免错误地将未标记的对象视为背景。我们还提出了一种基于自动编码器的数据插补方法,以利用可用的数据模式填补缺失的数据模式(某些AVs)。为了进一步调和异构性,我们最后提出了一种客户端选择机制,利用客户端模型之间的相似性来提高训练稳定性和收敛速度。我们在基准数据集上的实验证实,AutoFed在精度和召回率方面显著优于现状方法,同时表现出对恶劣天气条件的强鲁棒性。