We prove that the set of functions representable by ReLU neural networks with integer weights strictly increases with the network depth while allowing arbitrary width. More precisely, we show that $\lceil\log_2(n)\rceil$ hidden layers are indeed necessary to compute the maximum of $n$ numbers, matching known upper bounds. Our results are based on the known duality between neural networks and Newton polytopes via tropical geometry. The integrality assumption implies that these Newton polytopes are lattice polytopes. Then, our depth lower bounds follow from a parity argument on the normalized volume of faces of such polytopes.
翻译:我们证明由具有整数重量的ReLU神经网络代表的一套功能随着网络深度而随着网络深度的严格增加,同时允许任意宽度。 更确切地说, 我们证明$\ lcel\log_ 2( n)\ rcele$ 隐藏层对于计算最大值( $n$), 匹配已知的上限是必需的。 我们的结果是基于已知的神经网络和牛顿多面体通过热带几何测量的双重性。 完整性假设意味着这些牛顿多面体是拉蒂斯多面体。 然后, 我们的深度更低的界限来自关于这些多面体的正态面的对等性参数 。</s>