We employ a toolset -- dubbed Dr. Frankenstein -- to analyse the similarity of representations in deep neural networks. With this toolset, we aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer. We demonstrate that the inner representations emerging in deep convolutional neural networks with the same architecture but different initializations can be matched with a surprisingly high degree of accuracy even with a single, affine stitching layer. We choose the stitching layer from several possible classes of linear transformations and investigate their performance and properties. The task of matching representations is closely related to notions of similarity. Using this toolset, we also provide a novel viewpoint on the current line of research regarding similarity indices of neural network representations: the perspective of the performance on a task.
翻译:我们使用一个工具(称为弗兰肯斯坦博士)来分析深层神经网络中相似的表达方式。 我们用这个工具来将两个经过训练的神经网络的激活方式与一个缝合层相匹配。 我们用这个工具来证明在深层神经神经网络中出现的内部表达方式具有相同的结构,但不同的初始化方式可以匹配出惊人的高度准确性,即使有一个单一的缝合层。 我们从几类可能的线性变换中选择缝合层, 并调查其性能和特性。 匹配表达方式的任务与相似性的概念密切相关。 使用这个工具, 我们还就当前关于神经网络代表形式相似性指数的研究线提供了一种新观点: 一项任务的业绩观点。