Our work concerns algorithms for an unweighted variant of Maximum Flow. In the All-Pairs Connectivity (APC) problem, we are given a graph $G$ on $n$ vertices and $m$ edges, and are tasked with computing the maximum number of edge-disjoint paths from $s$ to $t$ (equivalently, the size of a minimum $(s,t)$-cut) in $G$, for all pairs of vertices $(s,t)$. Although over undirected graphs APC can be solved in essentially optimal $n^{2+o(1)}$ time, the true time complexity of APC over directed graphs remains open: this problem can be solved in $\tilde{O}(m^\omega)$ time, where $\omega \in [2, 2.373)$ is the exponent of matrix multiplication, but no matching conditional lower bound is known. We study a variant of APC called the $k$-Bounded All Pairs Connectivity ($k$-APC) problem. In this problem, we are given an integer $k$ and graph $G$, and are tasked with reporting the size of a minimum $(s,t)$-cut only for pairs $(s,t)$ of vertices with a minimum cut size less than $k$ (if the minimum $(s,t)$-cut has size at least $k$, we just report it is "large" instead of computing the exact value). We present an algorithm solving $k$-APC in directed graphs in $\tilde{O}((kn)^\omega)$ time. This runtime is $\tilde O(n^\omega)$ for all $k$ polylogarithmic in $n$, which is essentially optimal under popular conjectures from fine-grained complexity. Previously, this runtime was only known for $k\le 2$ [Georgiadis et al., ICALP 2017]. We also study a variant of $k$-APC, the $k$-Bounded All-Pairs Vertex Connectivity ($k$-APVC) problem, which considers internally vertex-disjoint paths instead of edge-disjoint paths. We present an algorithm solving $k$-APVC in directed graphs in $\tilde{O}(k^2n^\omega)$ time. Previous work solved an easier version of the $k$-APVC problem in $\tilde O((kn)^\omega)$ time [Abboud et al, ICALP 2019].


翻译:暂无翻译

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
41+阅读 · 2022年6月30日
专知会员服务
123+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
146+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月16日
Arxiv
0+阅读 · 2023年6月14日
Arxiv
0+阅读 · 2023年6月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员