This paper presents a mathematical analysis of ODE-Net, a continuum model of deep neural networks (DNNs). In recent years, Machine Learning researchers have introduced ideas of replacing the deep structure of DNNs with ODEs as a continuum limit. These studies regard the "learning" of ODE-Net as the minimization of a "loss" constrained by a parametric ODE. Although the existence of a minimizer for this minimization problem needs to be assumed, only a few studies have investigated its existence analytically in detail. In the present paper, the existence of a minimizer is discussed based on a formulation of ODE-Net as a measure-theoretic mean-field optimal control problem. The existence result is proved when a neural network, which describes a vector field of ODE-Net, is linear with respect to learnable parameters. The proof employs the measure-theoretic formulation combined with the direct method of Calculus of Variations. Secondly, an idealized minimization problem is proposed to remove the above linearity assumption. Such a problem is inspired by a kinetic regularization associated with the Benamou--Brenier formula and universal approximation theorems for neural networks. The proofs of these existence results use variational methods, differential equations, and mean-field optimal control theory. They will stand for a new analytic way to investigate the learning process of deep neural networks.


翻译:本文提供了对ODE-Net的数学分析,它是深度神经网络(DNN)的连续模型。近年来,机器学习研究人员提出了用ODE作为连续极限替换DNN的深度结构的想法。这些研究将ODE-Net的“学习”视为在参数ODE约束下的“损失”最小化。虽然需要假设这个最小化问题有最小化解,但只有少数研究详细地分析了它的存在性。在本文中,将ODE-Net的变分公式作为一种测度论的均场最优控制问题进行分析,并探讨了解决方案的存在性。当神经网络线性描述ODE-Net的向量场时,可以证明解的存在性。证明采用测度论公式和变分法的直接方法。其次,为了消除上述线性假设,提出了一种理想化的最小化问题,受Benamou-Brenier公式的动力学正则化和神经网络的通用逼近定理的启发。这些存在结果的证明使用变分方法,微分方程和均场最优控制理论。它们将为研究深度神经网络的学习过程提供新的分析方式。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Modern Introduction to Online Learning
Arxiv
19+阅读 · 2019年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员