In this study we consider the problem of detecting and quantifying changes in the distribution of the annual maximum daily maximum temperature (TXx) in a large gridded data set of European daily temperature during the years 1950-2018. Several statistical models are considered, each of which models TXx using a generalized extreme value (GEV) distribution with the GEV parameters varying smoothly over space. In contrast to several previous studies which fit independent GEV models at the grid box level, our models pull information from neighbouring grid boxes for more efficient parameter estimation. The GEV location and scale parameters are allowed to vary in time using the log of atmospheric CO2 as a covariate. Changes are detected most strongly in the GEV location parameter with the TXx distributions generally shifting towards hotter temperatures. Averaged across our spatial domain, the 100-year return level of TXx based on the 2018 climate is approximately 2{\deg}C hotter than that based on the 1950 climate. Moreover, also averaging across our spatial domain, the 100-year return level of TXx based on the 1950 climate corresponds approximately to a 6-year return level in the 2018 climate.
翻译:在本研究中,我们考虑了在1950-2018年期间欧洲每日温度的大型网格数据集中发现和量化每日最高温度(TXx)分布变化的问题。考虑了若干统计模型,其中每种模型都使用普遍极端值(GEV)分布模型,而GEV参数分布在空间上则不尽相同。与以前在格格箱一级适合独立的GEV模型的几项研究相比,我们的模型从邻近网格框中提取信息,以便更有效地估计参数。允许GEV的位置和比例参数在时间上变化,使用大气CO2的日志作为共差。在GEV位置参数中检测到的变化最为强烈,而TXx分布通常向更热的温度转变。平均而言,基于2018年气候的TXx100年返回水平比基于1950年气候的100年温度大约高2 /deg}C。此外,在我们的空间域中,基于1950年气候的100年返回水平与2018年气候的6年返回水平相近。