We present a framework for gesture customization requiring minimal examples from users, all without degrading the performance of existing gesture sets. To achieve this, we first deployed a large-scale study (N=500+) to collect data and train an accelerometer-gyroscope recognition model with a cross-user accuracy of 95.7% and a false-positive rate of 0.6 per hour when tested on everyday non-gesture data. Next, we design a few-shot learning framework which derives a lightweight model from our pre-trained model, enabling knowledge transfer without performance degradation. We validate our approach through a user study (N=20) examining on-device customization from 12 new gestures, resulting in an average accuracy of 55.3%, 83.1%, and 87.2% on using one, three, or five shots when adding a new gesture, while maintaining the same recognition accuracy and false-positive rate from the pre-existing gesture set. We further evaluate the usability of our real-time implementation with a user experience study (N=20). Our results highlight the effectiveness, learnability, and usability of our customization framework. Our approach paves the way for a future where users are no longer bound to pre-existing gestures, freeing them to creatively introduce new gestures tailored to their preferences and abilities.
翻译:我们提出了一个手势定制框架,要求用户提供最起码的示例,但并不降低现有手势组合的性能。为了做到这一点,我们首先部署一个大型研究(N=500+),收集数据,并培训一个交叉用户精确度为95.7%的加速仪-陀螺仪识别模型,在对日常非牙形数据进行测试时,每小时0.6个假阳性率为95.7%,在对日常非牙形数据进行测试时,每小时0.6个假阳性率。接着,我们设计一个几张照片的学习框架,从我们经过培训的模型中得出一个轻量的模型,使知识转移不降低性能。我们通过用户研究(N=20)验证了我们的方法,从12个新手势中检查了设备定制的对端定制,结果平均精确度为55.3%、83.1%和87.2%,在增加新手势时,使用1、3或5个针时平均精确度为87.2%,同时保持原有手势的准确性和假阳性率。我们进一步评估我们实时执行的实用性与用户经验研究(N=20)的实用性。我们的结果突出了定制框架的效力、可学习性和可及实用性框架。我们的方法为将来的姿态铺更难于新的姿态铺定式铺路。