项目名称: 镜对称及双有理代数几何背景下的高维 Calabi-Yau 簇
项目编号: No.11601015
项目类型: 青年科学基金项目
立项/批准年度: 2017
项目学科: 数理科学和化学
项目作者: 李展
作者单位: 北京大学
项目金额: 15万元
中文摘要: 三维 Calabi-Yau 簇是镜对称理论的重要研究对象. 此外,高维 Calabi-Yau 簇是高维代数簇分类中相对缺失的部分... 本项目将研究 Calabi-Yau 簇在镜对称中的导出范畴等价关系,以及 Hochschild 同调与弦论上同调的关系. 同时,我们将研究有纤维结构的三维 Calabi-Yau 簇的有界性,以及 Calabi-Yau 簇在小形变意义下的双有理性质等... 通过对这一系列问题的深入研究,有望促进镜对称理论与双有理代数几何两方面的发展,并使它们之间交叉作用,互相影响.
中文关键词: Calabi-Yau;簇;镜对称;双有理代数几何;双有理有界性;导出范畴
英文摘要: Three dimensional Calabi-Yau varieties are fundamental objects for mirror symmetry. Besides, higher-dimensional Calabi-Yau varieties are the relatively missing part in the classifications of higher-dimensional algebraic varieties...This proposal aims to research on derived equivalence of Calabi-Yau varieties in mirror symmetry, and the relations between Hochschild homology and string cohomology. Meanwhile, we will investigate on the boundedness problem of fibered Calabi-Yau threefolds as well as birational properties of Calabi-Yau varieties under small deformations...These investigations will promote mirror symmetry and birational geometry simultaneously, and let them interact with each other.
英文关键词: Calabi-Yau varieties;mirror symmetry;birational geometry;birational boundedness;derived categories