Normalizing Flows (NFs) are universal density estimators based on Neural Networks. However, this universality is limited: the density's support needs to be diffeomorphic to a Euclidean space. In this paper, we propose a novel method to overcome this limitation without sacrificing universality. The proposed method inflates the data manifold by adding noise in the normal space, trains an NF on this inflated manifold, and, finally, deflates the learned density. Our main result provides sufficient conditions on the manifold and the specific choice of noise under which the corresponding estimator is exact. Our method has the same computational complexity as NFs and does not require computing an inverse flow. We also show that, if the embedding dimension is much larger than the manifold dimension, noise in the normal space can be well approximated by Gaussian noise. This allows using our method for approximating arbitrary densities on unknown manifolds provided that the manifold dimension is known.


翻译:普通化流程(NFs)是基于神经网络的通用密度估计值。 但是,这种普遍性是有限的: 密度支持需要对欧洲culidean 空间进行二进制变异。 在本文中, 我们提出一种新颖的方法来克服这种限制, 同时又不牺牲普遍性。 提议的方法通过在正常空间添加噪音而使数据倍增, 在这种膨胀的多元上培训NF, 最后, 使所学密度减缩。 我们的主要结果为各种元提供了足够的条件, 以及相应的估计值所根据的噪音的具体选择。 我们的方法与 NFs 一样具有计算复杂性, 不需要计算反向流。 我们还表明, 如果嵌入的维度比多得多, 正常空间的噪音可以被高斯噪音非常接近。 这样可以使用我们的方法来适应未知的未知元的任意密度。

0
下载
关闭预览

相关内容

《日本在智慧农业上的举措》最新报告,24页PPT
专知会员服务
57+阅读 · 2022年3月23日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
62+阅读 · 2020年3月4日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Estimation of the Shapley value by ergodic sampling
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员