项目名称: 基于约束松弛的概率图模型近似推理研究及在计算摄像学中的应用
项目编号: No.61271388
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 无线电电子学、电信技术
项目作者: 陈峰
作者单位: 清华大学
项目金额: 88万元
中文摘要: 概率图模型上的近似推理及其应用是目前国内外研究的热点和难点问题,概率图模型在计算机视觉、信号处理、组合优化等领域应用广泛,同时也是研究新兴计算摄像学领域问题的重要工具。本项目针对概率图模型近似推理中存在的上下界精度和约束冗余等问题,以约束松弛为研究思路,在变分推理的基本框架下,从目标函数、约束范围和算法设计三个方面研究概率图模型近似推理问题,并将理论研究成果应用于解决计算摄像学的难点问题。研究内容包括:研究及评估变分近似自由能函数构建方法,分析函数性质和近似精度;提出有效和最优高阶约束的选择方法,设计多阶约束融合的分层消息传递算法并分析算法的单调性和收敛性;针对计算摄像学具体问题对推理的实时性要求,研究快速在线推理方法,并搭建验证性原型系统。该项目的成果将推动概率图模型近似推理的发展,并促进概率图模型在计算摄像学等领域的应用。
中文关键词: 概率图模型;近似推理;计算摄像学;;
英文摘要: Inference on graphical models and its applications are difficult problems that are widly studied at present. Many fields rely on graphical models, including computer vision and image processing, computational biology, natural language processing, control theory, and data mining. This project focuses on the accuracy of approximations and the redundancy of constraints. Based on the idea of constraints relaxation, we will study on the inference problems from objective function, relaxations and algorithms under the framework of variational inference. Moreover, our research achievements will help solve the problems in the field of computational photography. The research contents are as follows: propose new methods to construct free energy functions, analyze the properties and the accuracies of different free energy functions; propose efficient methods to select valid higher-order constraints and to seek the optimal higher-order constraints, design hierarchical message passing algorithms to add multi-order constraints, study on the properties of different algorithms, such as convergence, monotonicity; propose online approximate inference methods to solve the computing speed and memory capacity of computational photography, build prototype systems of camera. The achievements of this project will improve the developing
英文关键词: probabilistic graphical model;approximate inference;computational photography;;