We present a new sublinear time algorithm for approximating the spectral density (eigenvalue distribution) of an $n\times n$ normalized graph adjacency or Laplacian matrix. The algorithm recovers the spectrum up to $\epsilon$ accuracy in the Wasserstein-1 distance in $O(n\cdot \text{poly}(1/\epsilon))$ time given sample access to the graph. This result compliments recent work by David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant (2018), which obtains a solution with runtime independent of $n$, but exponential in $1/\epsilon$. We conjecture that the trade-off between dimension dependence and accuracy is inherent. Our method is simple and works well experimentally. It is based on a Chebyshev polynomial moment matching method that employees randomized estimators for the matrix trace. We prove that, for any Hermitian $A$, this moment matching method returns an $\epsilon$ approximation to the spectral density using just $O({1}/{\epsilon})$ matrix-vector products with $A$. By leveraging stability properties of the Chebyshev polynomial three-term recurrence, we then prove that the method is amenable to the use of coarse approximate matrix-vector products. Our sublinear time algorithm follows from combining this result with a novel sampling algorithm for approximating matrix-vector products with a normalized graph adjacency matrix. Of independent interest, we show a similar result for the widely used \emph{kernel polynomial method} (KPM), proving that this practical algorithm nearly matches the theoretical guarantees of our moment matching method. Our analysis uses tools from Jackson's seminal work on approximation with positive polynomial kernels.
翻译:我们展示了一个新的亚线性时间算法, 以近似光谱密度( egenvalue 分布 ), 即 $n\time 的光谱密度( egenval 分布 ) 。 该算法以 $O (nph\ cdot\ text{poly} (1/\\ epsilon) 来恢复瓦塞斯坦-1 距离的频谱, 直至$\ eepsilon 准确性。 我们推测, 瓦塞斯坦-1 距离的频谱值最高为$\ 美元 。 我们的方法很简单, 工作很顺利。 以一个 Chebyshev 多边瞬间匹配方法, 员工与 IMFlickror 的正数匹配。 我们证明, 任何 Hermitical 美元, 这个瞬间匹配方法从运行一个美元比 美元 美元 的运行时间基数, 以 IMFlickral 的基数比值比值 。